Abstract

The eastern Gawler craton hosts Australia's premier uranium-bearing iron oxide copper-gold (IOCG) belt, the >500-km-long Olympic Cu-Au-(U) province. In addition to the Olympic Dam Cu-U-Au and Prominent Hill Cu-Au deposits, numerous barren and weakly mineralized IOCG prospects are present in the province. New geochronological data for hydrothermal minerals combined with constraints from host-rock ages demonstrate that alteration and associated IOCG mineralization formed between ~1570 and ~1600 Ma in three districts of the province. This IOCG hydrothermal activity temporally overlaps with magmatism of the Hiltaba Suite and Gawler Range Volcanics. Titanites in paragenetically early magnetite-bearing alteration in the Olympic Dam and Prominent Hill districts yield U-Pb ion probe ages of 1576 ± 5 and 1567 ± 10 Ma, respectively. Molybdenite in veins crosscutting magnetite-biotite and albitic alteration in the Moonta-Wallaroo district have Re-Os ages of 1574 ± 6 and 1599 ± 6 Ma, respectively. These represent minimum ages of the IOCG alteration assemblages in this district. A muscovite 40Ar/39Ar age of 1575 ± 11 Ma provides a minimum age of paragenetically later hematitic alteration in the Olympic Dam district. Neodymium isotope compositions were determined for 44 whole-rock samples from barren and weakly mineralized Cu-Au prospects and host rocks in the Olympic Dam and Prominent Hill districts. The new geochronological framework enables comparison of the Nd isotope data across two IOCG districts at the time of formation of the Olympic Dam deposit (ca. 1590 Ma). Magnetite-rich weakly Cu-mineralized alteration from five prospects yields a relatively narrow range of {varepsilon}Nd(1590) values of -5.8 to -4.1. Both hematite- and magnetite-rich alteration yield generally similar {varepsilon}Nd(1590) values that match values from fresh and weakly altered Paleoproterozoic metasedimentary and metagranitic rocks (-6.6 to -3.5) as well as from most felsic Hiltaba Suite intrusions and Gawler Range Volcanics in the eastern Gawler craton (ca. -6 to -4). These data are consistent with crustal sources for REE and, by implication, for associated copper in the barren and weakly mineralized prospects. Mineralization and alteration in these minor IOCG systems can be geochemically discriminated from the giant Olympic Dam deposit, where greater inputs of mantle-derived REE and other ore components are evident.
Google map showing geographic bounding box with values North bound -29.0 East bound 138.0 West bound 133.0 South bound -34.0
Related Links
For information on acquiring this product,
please contact the Geoscience Australia Sales Centre via:

fax:
+61 2 6249 9960; or
phone:
1800 800 173 (within Australia);
 
+61 2 6249 9966 (outside Australia).

Please note that support hours are 9 am to 5 pm weekdays

Product Type/Sub Type

dataset - External Publication - Scientific Journal Paper

Constraints

license
Creative Commons Attribution 3.0 Australia Licence

IP Owner

Commonwealth of Australia (Geoscience Australia)

Author(s)

Date (publication)

2007

Product Type

dataset

Topic Category

geoscientificInformation

Keywords

External Publication
Scientific Journal Paper
Earth Sciences

Resource Language

English

Resource Character Set

utf8

Resource Security Classification

unclassified

Geographic Extent

North bound
-29.0
East bound
138.0
West bound
133.0
South bound
-34.0

Lineage

Unknown

Digital Transfer Options

onLine

Distributor

Role
distributor
Organisation Name
Geoscience Australia
City
Canberra
Administrative Area
ACT
Postal Code
2601
Country
Australia
Email Address

Metadata File Identifier

a05f7892-f9e2-7506-e044-00144fdd4fa6

Metadata Standard Name

ANZLIC Metadata Profile: An Australian/New Zealand Profile of AS/NZS ISO 19115:2005, Geographic information - Metadata

Metadata Standard Version

1.1

Metadata Date Stamp

2010-10-11

METADATA SECURITY CLASSIFICATION

unclassified

Metadata Contact

Role
pointOfContact
Organisation Name
Geoscience Australia
City
Canberra
Administrative Area
ACT
Postal Code
2601
Country
Australia
Email Address
Related Links
For information on acquiring this product,
please contact the Geoscience Australia Sales Centre via:

fax:
+61 2 6249 9960; or
phone:
1800 800 173 (within Australia);
 
+61 2 6249 9966 (outside Australia).

Please note that support hours are 9 am to 5 pm weekdays