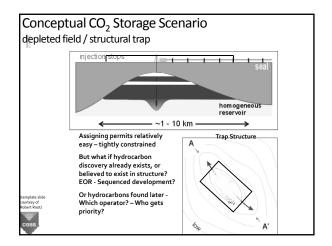


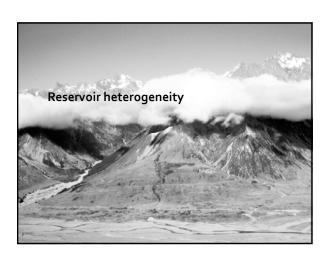
POLICY & LEGAL

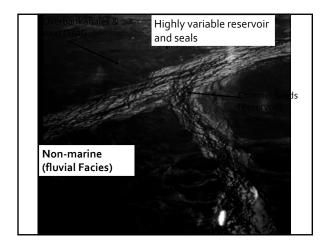
Issue : Policy & legal are way bigger than people appreciate?



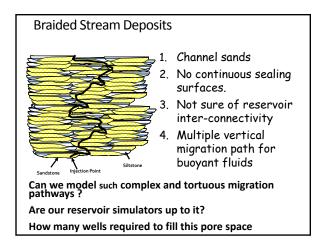
Injection scenarios?

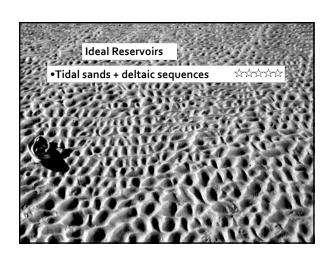
- Consider how the following scenarios (geo-cartoons to follow) impact on;
 - technical, regulatory and legal aspects?
- Structural (physical) trapping
- Chemical trapping
- Migration pathways
- Pressure transmission

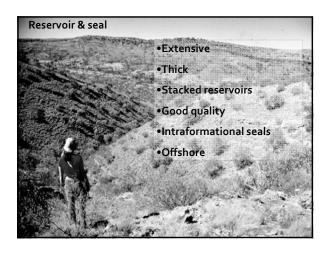

Conceptual CO₂ Storage Scenario hydrodynamic / residual gas / solution trap (MAS – Migration Assisted Storage) Injection stops Where do you put permit boundaries? How big do you make permits? What access rights do you employ? What if there are two storage operators – co-mingling of CO₂?

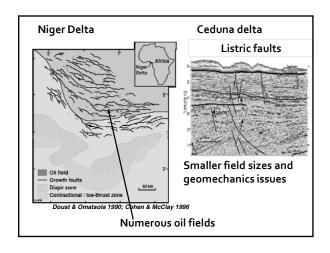

What about where Storage won't scale up locally?

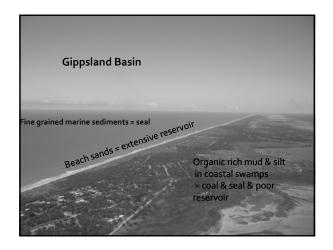
- Oil & Gas Resources "uneven distribution"
- Long Pipelines
- Ship Transport
- Right strategy needs implementing based on reality of local geology
 - Long Pipelines & Ship
 - Non-coal energy source
- The value placed on CO₂ will influence the above;
- Either socially, financially or inter-generationally

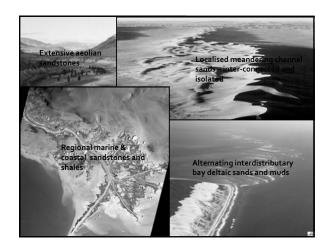

THIS IS JUST A TECHNICAL (SCIENCE & ENGINEERING) CHALLENGE .. ISN'T IT?

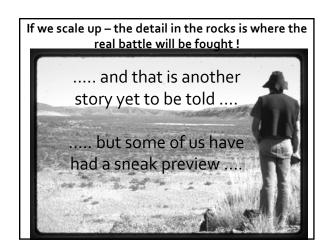

... plus getting the economics right to do it ...











Depositional Environments

- Highly variable
- But predictable
- Need good modern analogues to compare to the ancient rocks
- Conventional Petroleum Geology production issues
- Normal Reservoir Engineering challenges
- Again; this is just doing our homework properly – normal business practices

What about the number of wells required?

Issue: We must pay a lot of attention to well numbers

... it could be embarrassing (costly) if we get this one wrong

No.'s of Wells vs Reservoir Quality					
INJECTION REQUIREMENT	Mt CO ₂ / year	Environment, Age & Depth	No. of Wells	Reservoir Quality	Wells for 10 Mt CO ² PP
"Best" Coal 0.002 to Highly dependent or		Coal	1	ry very poor	531
•Depth and age		Marine: mass flow - young, 1200m	1	Superb 00 - 3000 mD	10
•Environment of dep •permeability x thick		Fluvial - old, ~ 2000m	3 (2) (horiz	Very Poor 5 - 45mD fractured	30
assumption product vertical vs horizont			rates	Good 50 - 250 mD	50
reservoir stimulation onshore vs offshore			itations	Good 50 - 250 mD	50
• reservoir heteroger		Marino - vouna	uity	Superb multi D	2.3 (5?)
(capacity) • multiple perforation		Deitaic - 2000m		Superb multi D	2.5
 pressure – build up, long term reliability 		Deltaic, aeolian - 2000m	????	Very Good 0 mD (to D's)	5
Exists - Proposed - Modelled - Problematic					

Conclusions

- Issues include;
- Policy, Technical, Legal, Regulatory & Financial
- ... and their interactions
- Beware of:
- Well numbers, and
- Costs
- Need to;
- "Engineer the reservoir" due to scale of problem

Reservoir Pressure Build up

"If a site is of poor quality in terms of permeability (and thus can only accept small rates of injection), but has a lot of pore space and potential storage volume, then there will be a limit to the rate at which the CO₂ can be injected for each well. This may limit its utility as a storage site because it will require large capital costs for many wells and compressors, and, hence, quoting such a site as having large storage capacity may be extremely misleading."

ource: Bradshaw, et. al. 2007. CO₂ Storage Capacity Estimation: Issues and development of standards attendated to the control 2007:62-68

Storage Capacity Resource Pyramid: requirements to reach "storage ready" Better quality Initiation site code Gource and sinks including supply and reservoir performance assessment Practical (Viable) capacity: Applies economic and regulatory barriers to realistic capacity, Effective (Realistic) capacity: Applies technical cut off limits, technically viable estimate, more pragmatic, actual site / basin data Theoretical capacity: includes large volumes of "uneconomic" opportunities. Approaches physical limit of pore rock volume; unrealistic and impractical estimate Bradshaw et al 2002; Bradshaw et al 2007, Bachu et al 2007

Reservoir Pressure Build up

- Bert van der Meer (GHGT9 November 2008)
 - Invaded space
- Van der Meer & Yavuz (2009)
 - $\,{}^{_{0}}\,\,$ up to a tenfold reduction in the proposed injection plan
 - threefold reduction compared with the earlier estimations of storage capacity when pressure build up was not taken into account
- Birkholzer et al (2009)
 - plume occupied a radial area of less than 2 km
 - pressure front with considerable pressure build up extended laterally for over 85 km with an area of influence of 22,000 km²

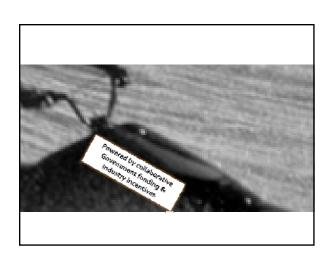
Reservoir Pressure Build up

- Birkholzer and Zhou (2008)
 - Mt Simon Sandstone
 - pressure build-up over a large area 15,000 km²
 - previous theoretical storage capacity estimates based on application of storage efficiency factors and Monte Carlo simulation) ranged from 27,000 to 109,000 Mt CO₂ (USDOE, 2008)
 - geomechanical constraints are placed on by regulators, then the storage capacity may not achieve the modelled values of 5,000 to 13,000 Mt CO₂

ogss

Reservoir Pressure Build up: considerations

- fracture pressure
 - limitations that may have on storage capacity
 - Impact on injection rate, well numbers & cost
- regulatory regime
 - impact of large scale injection
- entire hydrologic regime
 - will need to be monitored
- Where pressure draw down has occurred due to production of groundwater
 - pressure build-up may be a benefit
 - provided saline water does not mix with the freshwater systems
- consider the use of pressure relief wells
 - Adds to cost



Some Gaps & Challenges?

- Trained staff
- to take up the challenge
- **Reliable Storage Capacity Estimates (Country level)**
 - impact on Gov't policy
- Lower Capture costs (power stations) up to 50 60% expected

- Government regulations & Storage permit access
 Competing resources (water + hydrocarbons), Economic regime (incentive to invest), Land tenure, OHS, etc
- Access to data (digital)
- Well, seismic, production
- **Commercial Scale Sites**
- Learn by doing
- **Public Acceptance**
- otherwise go nowhere
- need Geoscientists to engage in the debate
- Gone past time for immediate action

