

Case Study:

The Gorgon CO₂ Injection Project

Scott Ryan Senior Reservoir Engineer Gorgon CO₂ Injection Project

Key Messages

- The Gorgon Project Joint Venture Partners have agreed to construct the world's largest subsurface CO₂ disposal facility on Barrow Island, off Australia's northwest coast
- Subsurface disposal of CO₂ requires many of the same technologies and skills as other major petroleum developments:
 - Data acquisition and subsurface evaluation using multidisciplinary subsurface teams
 - Coordinated approach to field development planning and uncertainty management
 - Integrated reservoir surveillance planning to monitor subsurface CO₂ behaviour following injection
- The CO₂ Injection Project was therefore treated with the same attitude and approach as for the gas field development plans
- The technical feasibility of CO₂ disposal beneath Barrow Island has undergone several phases of Joint Venture and State Government sponsored peer review

Gorgon Project Development Concept

- Gas produced from subsea wells in Gorgon & Jansz fields (>2 Bcf/day gross)
- LNG (15 MTPA) + Domestic Gas (300 TJ/d) processed & exported from Barrow Island
- Gorgon gas ~14% CO₂
- Jansz gas <1% CO₂
- CO₂ separated and injected into Dupuy formation below Barrow Island (1.6-2.4 Tcf total CO₂)
- Project now under construction
- First gas production 2014
- Additional discovered fields under evaluation for future tieback

Reservoir CO₂ Injection Project

- The first major project in Australia to significantly reduce project emissions by the underground injection of carbon dioxide
- Project emissions expected to be reduced by approximately 40% (~3.4-4 MTPA CO₂equivalent)
- About A\$2 billion will be invested in the design and construction of the CO₂ project
- Costs per tonne remain less expensive than alternate abatement options
- Number of world firsts
 - First geosequestration legislation
 - First CO₂ injection project to undergo detailed environmental impact assessment (including public review and comment)
 - Largest subsurface CO₂ disposal project in the world

Site screening and selection

- Four criteria considered:
 - <u>Containment risk</u> e.g. security of top seal, distance to faults, number / condition of existing well penetrations
 - Storage capacity e.g. gross rock volume, regional structure capacity, reservoir architecture, connected aquifer extent
 - <u>Injectivity</u> e.g. permeability, thickness and extent of target reservoir sands
 - Risk to other assets e.g. risk of fluid / pressure interference with other operating, discovered or undiscovered hydrocarbon fields
- 19 sites / concepts initially assessed in screening study:
 - Saline aquifers
 - Existing hydrocarbon fields
 - Enhanced Oil Recovery opportunities
- Five sites further assessed with screening-level simulation studies
- Barrow Island Dupuy Formation only site that adequately satisfied all criteria

CO₂ Reference Case Development Plan

- Project sited on north-east of island
- Nine CO₂ injection wells (with space for nine more) from three drill centres
- Four water production wells + water injection wells
- Peak stream day CO₂ rate: 220 MMscf/d
- CO₂ volume: 1.6 2.4 Tcf (~ 80-130 million tonnes)
- Reservoir Surveillance:
 - Surveillance wells two initially plus two in later field life
 - Repeat 4D seismic (if successful) + Vertical Seismic Profiles
 - Soil Gas surveys
- Abandonment of existing Dupuy wells in plume area; program for ensuring existing well penetrations in the plume area do not provide leakage pathways
- Commitment to make data from the ongoing monitoring available to the public

CO₂ Injection Interval – Barrow Island

Barrow Island Stratigraphy

- Site selection was vital Dupuy has adequate permeability for injectivity but low enough for good residual gas trapping
- Adequate existing subsurface data
- Several seals between injection zone and surface _____

Dupuy Formation

Proposed injection interval

Reservoir Simulation – Testing Development Plan

- CO₂ plume migration influenced by pressure management wells, reservoir quality & distribution, buoyancy, rate of dissolution
- Effects incorporated into reservoir simulation models
- Wide range of subsurface uncertainties investigated using:
 - Full field models (testing overall development plan)
 - Sector models (investigating specific effects, e.g. near-wellbore)
- Development plan tested against two main criteria:
 - INJECTIVITY i.e. scheme must handle rate of produced CO₂ from Gorgon
 - CONTAINMENT i.e. scheme must retain total <u>volume</u> of CO₂ in the subsurface

Pressure Management Concept

- Pressure management required to reduce impact of rising pressure on CO₂ injection performance:
 - Maintain injection rates
 - Avoid reaching bottom hole pressure limit
- 100% offtake balance not necessary – expect large connected aquifer to "absorb" much of the pressure increase
- Produced water injected into overlying Barrow Group (depleted)

- Growth in plume area is rapid during injection, but limited following site closure
- CO₂ concentrated in centre, very diffuse at edges

- Growth in plume area is rapid during injection, but limited following site closure
- CO₂ concentrated in centre, very diffuse at edges

Operated by **Chevron** in joint venture with ExxonMobil, Shell, Chubu Electric, Osaka Gas and Tokyo Gas

- Growth in plume area is rapid during injection, but limited following site closure
- CO₂ concentrated in centre, very diffuse at edges

- Growth in plume area is rapid during injection, but limited following site closure
- CO₂ concentrated in centre, very diffuse at edges

- Growth in plume area is rapid during injection, but limited following site closure
- CO₂ concentrated in centre, very diffuse at edges

Operated by **Chevron** in joint venture with ExxonMobil, Shell, Chubu Electric, Osaka Gas and Tokyo Gas

- Plume movement influenced by water offtake, reservoir depositional trends and structure
- Growth in plume area is rapid during injection, but limited following site closure
- CO₂ concentrated in centre, very diffuse at edges

- Plume movement influenced by water offtake, reservoir depositional trends and structure
- Growth in plume area is rapid during injection, but limited following site closure
- CO₂ concentrated in centre, very diffuse at edges

- Plume movement influenced by water offtake, reservoir depositional trends and structure
- Growth in plume area is rapid during injection, but limited following site closure
- CO₂ concentrated in centre, very diffuse at edges

Managing Risk – Reservoir Surveillance Objectives

- Reservoir surveillance options have been selected to assist responsible reservoir management
- Reservoir surveillance focused on early identification of uncertainty "signposts" (as per Uncertainty Management Plan)
- When signposts are identified, then mitigation plans can be implemented to ensure the injected carbon dioxide continues to be properly managed
- Integration of reservoir surveillance and reservoir simulation data will assist the demonstration of site integrity

Integrated Monitoring Plan

- CO₂ Injection & Pressure Management Wells
 - Wellhead pressure and flow rate
 - Continuous down-hole pressure
 - PLT & casing/cement integrity logs
- Surveillance Wells Vertical distribution and volumetric calculation
 - Continuous downhole pressure (Barrow Gp)
 - Saturation & casing/cement integrity logs
 - Vertical Seismic Profiling (VSP)
- 4D Surface Seismic Lateral extent and broad vertical distribution
 - 3D baseline survey
 - Repeat 2D and 3D surveys determined by viability of seismic for monitoring plume position
- Soil Gas Verification
 - Soil gas flux sampling over the 3D seismic source grid and at potential near-surface seepage points
- Surface Safety & environment
 - Pressure sensors and CO₂ detection equipment within compression and pipeline facilities

Reservoir Monitoring, Risk Mitigation & Site Closure

- Monitoring aimed at identifying signposts so that effective mitigation actions can be implemented
- Site closure is the point where operational responsibility ends and is marked by satisfaction of site closure criteria
 - Criteria to be determined by legislation
 - Future land use objectives can be met
 - Residual risk of leakage and resulting liability is acceptably low
 - Any ongoing costs are low or otherwise appropriately managed
 - Liability transferred to State and Commonwealth Governments

Conceptual Risk Profile

Concluding Messages

- The Gorgon CO₂ Injection Project is first of its kind in many technical and regulatory aspects
- The same attitude and approach to subsurface studies and development was adopted for the CO₂ project as for the hydrocarbon fields
- Much effort was invested into project assurance for internal and external stakeholders
- Pressure management wells are fundamental to the development plan
- Reservoir surveillance is important to maintain performance and to capture lessons learned

Acknowledgements

The authors wish to thank Chevron and the Gorgon Joint Venture Participants:

- ExxonMobil
- Shell
- Chubu Electric
- Osaka Gas
- Tokyo Gas