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CHAPTER 9
SEDIMENT FACIES OF THE COCOS
(KEELING) ISLANDS LAGOON
BY
S.G. SMITHERS *

ABSTRACT

- -Surficial sediments from the Cocos (Keeling) Islands Tagoon were classified
according to texture and composition using factor analysis. Six main textural facies: 1)
slightly gravelly coarse sands, i1) slightly gravelly medium sands, iii) gravelly sands, iv)
sandy gravels, v) gravelly muds, vi) slightly gravelly fine sands; and three main
compositional facies (i) coral-type sediments, ii) molluscan mud sediments, iit) coralline
algae/Halimeda type sediments were identified, accounting for over 90% of sediment
variation in the lagoon. These facies can be related to the provenance of constituent
components and lagoonal hydrodynamics.

INTRODUCTION

The main atoll of the Cocos (Keeling) Islands (96°48'-56'E; 12904'S) consists of a
horse-shoe shaped reef rim, on which 26 reef islands lie, surrounding a central lagoon of

approximately 190 km2. The lagoon can be divided into two broad provinces, the deeper
(8-15 m) northern basin and the shallower southern flats (0-3 m) (Fig.1). Blue holes
exceeding 20m depth occur in several parts of the lagoon, but are most obvious across the
shallower southern flats. A more detailed description of lagoonal marine habitats is
provided by Williams (this volume), and they are mapped in Figure. 2. At the north of the
atoll, deep and wide passages either side of Horsburgh Island connect the lagoon to the
open ocean. Other exchange between the lagoon and ocean is restricted to 11 shallow reef
flat passages situated on the eastern and southern atoll rim. Currents through these reef
passages are predominantly unidirectional into the lagoon, probably driven by the
persistent southeast trade winds which prevail for most of the year, and wave set-up
generated by the swells which continually break over the windward reef crest. The
hydrodynamics of this atoll have been examined recently by Kench (this volume).

Lagoonal infilling by sediments produced on the reef rim is generally accepted as
the dominant constructional process on atolls after the reef rim has reached a stable sea
level (Marshall and Davies 1982, Frith 1983, Tudhope 1989). Upward growth of the reef
rim has been limited by sea level for more than 2000 years on the Cocos (Keeling) Islands
(Woodroffe et al. 1990a, 1990b, this volume), and historical accounts (Darwin 1842,
Guppy 1889) indicate that much of the southern part of the lagoon has been rapidly
infilled. During his visit in 1836 Darwin sailed to the south of the lagoon through channels
dredged through living coral. Sand sheets or seagrass meadows which are often exposed
at low tides now cover these areas. Vibrocore data were used to establish the nature and
chronology of longer term (mid-late Holocene) accretion in several parts of the lagoon
(Smithers et al. in press).
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Sediments infilling atoll lagoons consist almost entirely of skeletal carbonate
secreted by reef organisms, and facies development within atoll lagoons is governed by
interaction between the supply and physical properties of the source material and the
various processes which degrade, redistribute and stabilize sediments (Maxwell et al.
1964, Milliman 1974). Biogenic carbonates may consist of either rigid reef framework or
unconsolidated detrital material, and may be produced and deposited in situ
(autochthonous) or produced outside the lagoon and transported in before deposition
(allochthonous). The relative contributions of allochthonous and autochthonous sediments
usually varies around a lagoon, and can be determined from the texture and provenance of
contributory components (Swinchatt 1965, Orme 1973). Reconciling the habitat zone of
the source organism with the location of the depositional zone, and the determination of

textural gradients between sediment sources and sinks; allows hydrodynamic; sediment——

transport, and facies development processes to be inferred.

There have been few studies of the lagoonal sediments of Indian Ocean atolls and
the lagoon of the Cocos (Keeling) Islands differs in several ways from other atolls where
sedimentation has been examined. Firstly, the sediment producing biota of the Cocos
(Keeling) Islands appear to differ from other atolls, possibly due to its extreme isolation.
Secondly, the size, bathymetry and hydrodynamics of this lagoon differ from other atolls
where carbonate sedimentation has been investigated. Early studies chiefly examined
sediments from the relatively large and deep Pacific atolls with lagoons which deepen
towards the centre (e.g. Kapingamarangi - McKee et al. 1959, Bikini, Rongelap,
Enewetok - Emery et al. 1954). Smaller atoll lagoons with complex bathymetry have more
recently received some attention (Mataiva, Takapoto - Adjas et al. 1990, Henderson Reef -
Chevillon and Clavier 1990, Mataiva - Desalle et al. 1985), but once again are concentrated
in the Pacific. This paper reports on an examination of the surficial lagoonal sediments of
the Cocos (Keeling) Islands, a moderately sized Indian Ocean atoll with a complex
lagoonal bathymetry. The primary aims were to: (1) detiermine the textural and
compositional characteristics of lagoon surface sediments; (2) identify and map textural and
compositional facies; and (3) relate facies distribution to specific biotic/physiographic
environments.

METHODS AND MATERIALS

The lagoon floor was examined on a series of boat and snorkel transverses. A total
of 167 sediment samples were collected from the lagoon bed (Fig. 3), using a sampling
strategy based on environments determined from aerial photographs and SPOT satellite
imagery. Not surprisingly, the lagoonal environments delineated in this way are very
similar to the marine habitat units established by Williams (this volume). Samples were
collected by scooping unconsolidated sediments into plastic bags except in depths that
exceeded 8m when a weighted steel dredge was used.

Seventy-six sediment samples were analysed granulometrically using the
techniques of Folk (1974), making sure that several samples from each lagoonal
environment were examined. Where necessary the mud fraction was first separated by wet
sieving; these samples were washed with 200 ml of distilled water and approximately 1ml
of 10% Calgon for each gram of estimated mud content. The mixture was left to stand
overnight then mechanically stirred for 3 minutes and washed through a 4¢ sieve.
Sediments larger than 4¢ were dried, weighed and between 50-70grams transferred to a
nest of sieves ranging from -2g¢ to 4¢, with a 0.5¢ interval. The sieves were mechanically
shaken for 15 minutes and the fraction retained on each sieve (and the pan) weighed.



Mean grain size, sorting and skewness were determined using the graphic methods of Folk
and Ward (1957).

The skeletal compositions of 50 sediment samples were examined. Representative
subsamples were taken from sieve fractions greater that 3.5¢ and grains were identified
and point-counted using a binocular microscope. Approximately 100 grains were
identified for each sieve fraction. Fifteen component categories were recognized: (i) coral
shingle and grit; ii) Halimeda fragments; ii1) coralline algae (principally Spongites rhodolith
fragments); iv) Homotrema; v) gastropod fragments; vi) pelecypod fragments; vii)
unknown molluscan fragments; viil) Marginopora; ix) Amphistegina; x) other
foraminiferans; xi) echinoids; xii) annelids; xiii) alcyonarian spicules; xiv) crustacean

- fragments;-and xv).indeterminate or unrecognisable grains.-Component representation i

the total sample was expressed as a weight percentage of the total sample. Granulometric
and compositional data were analysed using (J-mode factor analysis (Klovan 1966, 1975,
Gabrie and Montaggioni 1982, Montaggioni et al. 1986) in order to classify sediments
according to their compositional and textural characteristics (Smithers 1990).

RESULTS
SEDIMENT TEXTURE

The textural characteristics of seventy-six sediment samples from the Cocos
(Keeling) Islands lagoon are presented in Table 1 and descriptive statistics for each of the
lagoonal environments provided in Table 2. These results indicate that the Cocos
(Keeling) Islands lagoon is dominated by poorly sorted, slightly gravelly (<10%) fine to
coarse sands. Several general trends in sediment texture can be identified. Mean grain size
is greatest in the interisland channels and is lowest in the seagrass meadows and intertidal
sand and mud flat areas. Gravel abundance appears closely related to coral outcrop
proximity, the highest mean values occuring in the interisland channels where
autochthonous gravels are deposited with allochthonous gravels transported from the reef
flats, and in the blue hole mosaic where gravels derived from patch reefs are common.
Occasional high gravel values in samples collected elsewhere in the lagoon can largely be
attributed to the deposition of autochthonous carbonates. Mud content peaks at around
45% in the seagrass meadows but generally comprises 0-2% of most sediment samples.
Sorting is typically poor, but improves in the exposed sandy areas in the north of the
lagoon. Skewness values range from strongly fine skewed to strongly coarse skewed, and
in different areas may reflect either in situ sediment production or else the selective removal
of certain grain sizes by incident currents. The significance of variation in the textural traits
of lagoon sediments will be addressed in the discussion.

Six factors were extracted from the data matrix of 14 variables (weight % of
sediment in each sieve fraction) and 76 observations (sediment samples) using a Q-mode
factor analysis which can account for 91.7% of the data variance. Communality values are
high for all samples indicating that a good description of all samples is given by these
factors. Sediment samples were classified according to the factor axis each was most
heavily loaded upon; samples belonging to each class are listed in Table 3. The grain size
distributions of samples with the highest loading on each factor axis are presented in
Figure 4 and the average textural statistics of sediments assigned to each factor are given in
Table 4.

Descriptions of the textural sediment types classified on each factor axis are
provided below and their distribution is shown in Figure 5:



Factor One - Slightly Gravelly Coarse Sands. These sediments account for over one third
of the samples and are chiefly composed of coarse sands with a minor gravel component
(Fig. 4a and Tables 1 and 2). The grain size distribution is characterised by a primary
mode in the 08-0.5g range and the mean grain size is around 0.5¢. Muds usually form
less than 1% of these sediments. Sorting and skewness are variable; ranging from
moderately well to poorly sorted and from strongly fine to strongly coarse skewed.
Slightly gravelly coarse sands occur throughout the lagoon, but appear to be most
concentrated in the exposed areas of the deeper northern part of the lagoon and around the
interisland channels.

.Factor Two--Slightly Gravelly Medium Sands.-These sediments are-very- similar to-those
defined by factor one, however the sand fraction is finer with the principle mode being
between 1.5¢-2¢ (Fig. 4b). Sediments represented by this factor range from moderately
well to poorly sorted and show a tendency to be coarse skewed. These sediments cover
much of the lagoon floor, being patchily interspersed with the slightly gravelly coarse
sands in the north of the lagoon and covering large areas north of the southern passage.

Factor Three - Sandy Gravels. High gravel content is the definitive trait of these
sediments, with the grain size distributions peaking in the >-2¢ interval (Fig. 4c). They
are typically finely or very finely skewed and range from poorly to moderately sorted. A
second, smaller modal peak may occur in the sand sized range. Sandy gravel patches are
sporadically distributed within the lagoon, with three distinct patches located in the centre
of the lagoon and another occuring south of Horsburgh Island. Smaller pockets of sandy
gravel are located just north of both Pulu Maria and the seagrass meadows behind South
Island.

Factor Four - Gravelly Sands. These sediments are composed principally of sands, but
also have a moderate gravel content (Fig. 4d). Grain size distributions are often bimodal,
reflecting the poor sorting and variable skewness of most of these sediments. Gravelly
sands are also patchily distributed over the lagoon, with a distinct band located lagoonward
of the islands on the eastern rim. Several smaller patches occur towards the lagoon centre.

Factor Five - Gravelly Muds. Abundant fine sands and muds characterize these sediments,
although gravels are also moderately well represented (Fig. 4e). Sorting, therefore, is
typically poor and most grain size distributions coarsely skewed. Gravelly muds occur in
the lee of the windward islands and in the shallow embayments locally known as Teloks.

Factor Six - Slightly Gravelly Fine Sands. Fine sands in the 2.5¢-3.0¢ range dominate
these sediments. The fine sands may grade into muds in some samples and they are
usually coarse skewed and poorly to moderately sorted (Fig. 4f). Patches of shghtly
gravelly fine sands are found throughout the lagoon, however they are more common in
the north central areas.

SEDIMENT COMPOSITION

The skeletal compositions of 50 samples collected from the Cocos (Keeling)
Islands lagoon are listed in Table 5 and the average composition of sediments deposited in
each lagoonal environment presented in Table 6. It is evident from this table that the
abundance of skeletal constituents may vary markedly between different lagoonal
environments. Furthermore, relatively large standard deviation values suggest that
sediment composition may also vary markedly within lagoonal environments.



Nevertheless, several general statements can be made about the composition of sediments
deposited within this lagoon. Coral debris clearly dominates most samples (range: 8§1.46%
in sample 12 to 11.05% in sample 58), comprising the major identifiable component in all
lagoon environments (see Table 6). Halimeda and coralline algae also contribute
significantly to many samples (Halimeda >15% of samples 24, 29, 45, 48, 49, 58, 124,
171; coralline algae >15% of samples 6, 34, 58, 66, 125, 164, 165, and vibrocore cv15),
particularly those collected where hard coral substrates exist, such as the blue hole mosaic
and the interisland channels. Coralline algae may either encrust other constituents or
consist of rhodolith debris, the later being spherical coralline algae colonies which are
particularly abundant in the high energy interisland channels. The Acropora shingle which
is widespread over the central lagoon floor is also heavily encrusted with coralline algae
and represents a potential source of this material. Homotrema is 2 minor contributor to
lagoonal sediments (range: 2.48% in sample 24 to 0% in many samples) but appears most
abundant close to high energy, hard substrate environments. Gastropod detritus comprises
around 5% of the sediment in most lagoonal environments, rising to an average of over
10% in the intertidal sand and mud flat areas, and accounting for more than 10% of some
samples from the seagrass meadows (117, 122). Pelecypods comprise less than 5% of
most samples, but contribute 9.8% and 9.35% of samples 108 and 38 respectively.
Marginopora tests make up 0-4% of most samples with no clear pattern to their distribution
being immediately apparent. Amphistegina is a widespread but locally significant
component, being most prolific on the reefs south of Horsburgh Island and in the sandy
lagoon floor region in the north of the lagoon. Annelida, alcyonarian spicules, crustacean
debris and echiniod spines are generally present in small quantities. Crustacean detritus
can, however, occasionally be quite high in areas where living crustaceans are plentiful
(i.e. sample 39 from Telok Jambu - 7.85%). Alcyonarian spicules represent only a small
proportion of most sediments (range: 6% in sample 50 to 0% in many) but appear most
abundant in samples just lagoonward of the reef rim. Indeterminate sediments include
sediments <3.5g and those not readily recognisable because of corrosion. As outlined in
the textural results, the abundance of fine sediments is greatest in the seagrass meadows
and intertidal sand and mud flat areas. The -0.5¢ fraction of a sheltered seagrass meadow,
interisland channel, interisland channel/ sand apron and central lagoon sample is presented
in Figure 10a-d.

Three factors were extracted from the data matrix covering 15 component variables
and 50 sediment samples. All samples except 153 have high communality values,
suggesting that a good description of most samples is given by these factors. The lower
value for sample 153 probably reflects the exceptionally high representation of
Amphistegina in this sample, this being more than five times greater than in the sample
with the next highest representation. Samples were classified according to the axis upon
which they were most heavily loaded except where samples had similar loadings on more
than one axis. Loadings were considered similar if the absolute difference between
loadings on different axes was less than a third of the larger loading value, and where this
occurred samples were deemed to be hybrids. Samples belonging to each class defined by
the factor analysis are listed in Table 7 and pie charts showing the composition of the
sample most heavily loaded on each factor axis are presented in Figure 6. These and the
average compositional facies statistics are presented in Table 8.

Descriptions of the compositional sediment types discriminated by the factor
analysis are provided below and their distribution is presented in Figure 7.

Factor One: Coral-Type Sediments. Coral-type sediments are chiefly characterised by the
compositional dominance of the sample by coral debris. More than 60% of samples
collected from the Cocos (Keeling) Islands lagoon are classified as coral-type sediments,




conforming with the preponderance of coral evident in the raw compositional data.
Skeletal material derived from organisms commonly associated with hard coral substrates
(i.e. Homotrema, Amphistegina, annelids and alcyonarian spicules) also reach their highest
representation in this facies. Most of the lagoon bed is covered by sediments most
adequately described as coral-type, the main exceptions being the areas in the lee of the
windward islands.

Factor Two: Molluscan Mud Sediments. A large indeterminate component is characteristic
of these sediments and they contain a noticeably smaller quantity of recognisable coral
debris than the coral-type sediments depicted by factor one. Gastropod debris is also
found in these sediments in moderate amounts, reaching its highest representation in this
—facies. -Crustacean debris-is-also significantly more abundant-in-these sediments thanin
any of the other facies, and Marginopora is most prolific in these sediments. Molluscan
mud sediments are predominately restricted to the shallow protected parts of the lagoon,
however there are outlying patches in the north and central lagoon.

Factor Three Coralline Algae/Halimeda Type Sediments. These sediments are essentially
differentiated because they contain a relatively high proportion of coralline algae and
Halimeda and a relatively low proportion of coral debris. Abundant rhodolith debris
determines that sediments deposited in the lee of Pulu Maria and Pulu Siput are most
heavily weighted on this factor, whilst Halimeda debris is responsible for sediments on
the edge of the seagrass meadows in the lee of South Island being loaded on the third
factor axis.

DISCUSSION

The nature and distribution of sedimentary facies in the Cocos (Keeling) Islands
lagoon essentially reflects the interaction of wave and current energy on skeletal sediments
derived from a range of organisms growing in different lagoon environments. The reef
islands and a discontinous reef rim control the distribution of wave and current energy
within the lagoon; directly controlling the entry and distribution of allochthonous sediment,
indirectly controlling the distribution of autochthonous sediments by influencing biotic
zonation, and controlling the redistribution of sediments within the lagoon. Three main
features characterise the sedimentary facies of the Cocos (Keeling) Islands lagoon, these
being: 1) the domination of the lagoon by coral derived sediments; 2) sediment sorting in
areas of relatively high hydrodynamic energy and the deposition of predominantly poorly
sorted sands and gravels in the centre of the lagoon; and 3) the concentration of mud
deposits in the lee of the windward islands, almost exclusively in the seagrass and
intertidal sand and mud flat environments.

The predominance of coral derived sediments and subsequent coverage of most of
the lagoon by the coral-type compositional facies is a striking feature of the Cocos
(Keeling) Islands lagoon (Fig. 7), which is even more remarkable considering the dearth
of living coral presently on this atoll. Compared to other carbonate lagoons coral
components comprise an inordinate proportion of the sediments deposited in this lagoon
(Fig. 8). Several possible reasons exist for the high representation of coral sediments in
this lagoon, including its relatively small size and shallow nature. Milliman (1974)
suggested that because the ratio of lagoonal area to reef rim becomes smaller as atoll size
declines smaller lagoons are more likely to receive a higher proportion of reef flat
sediments, including a substantial proportion of coral material. Alternatively, because
much of the Cocos (Keeling) Islands lagoon is less than 10 m deep, a depth range
dominated by corals in many reef environments (Emery et al. 1954 Stoddart 1969,



Milliman 1974), it is perhaps not surprising that coral sediments are abundant here.
Indeed, coral outcrops are common throughout most of the Cocos (Keeling) Islands
lagoon, imparting a reefal character on most lagoonal sediments. Moreover, lack of net
bathymetric relief has restricted the habitat potential of this lagoon and many components
and facies derived from organisms normally found in deeper water are poorly represented
here (e.g. the deep water Halimeda facies reported from deeper lagoons like Suwarrow
(Tudhope et al. 1985), Kapingamarangi (McKee et al. 1959) and Enewetok (Emery et al.
1954)).

The geomorphic history of the atoll may provide another explanation for the
abundance of coral derived sediments in this lagoon. Woodroffe et al (1990a, 1990b, this
~volume)-have established that approximately 3000 years ago sea level on this atoll was
close to 1m higher than present, and that at this time a sea-level limited reef flat encircled
much of the lagoon. Sea-level has subsequently fallen to its present level and most of this
higher reef flat has been substantially eroded, remnants existing as the contemporary
conglomerate platform. Clearly the erosion of this fossil reef flat comprises a potentially
significant source of coral sediments which may have been transported around the atoll
under different physiographic conditions as the atoll has developed. Prior to the
consolidation of the larger islands (particularly South Island), for example, coral sediments
were presumably transported into the lagoon through more numerous interisland channels
and could potentially achieve a more widespread coverage of the lagoon.

Although coral-type sediments veneer most of the lagoon (Fig. 7), specific areas
are covered by sediments which are more or less coral-type than others (i.e. are more or
less heavily loaded on the first factor axis due to variations in the abundance of coral and
other components), and textural parameters delineate two distinct source zones, the reef
rim and the lagoon. Deposits formed by allochthonous material transported from the reef
rim are typically most strongly defined as coral-type sediments and those composed of
autochthonous material produced within the lagoon less so, reflecting a change from a
strongly reefal component assemblage (i.e. coral, coralline algae, Homotrema, alcyonarian
spicules, Amphistegina) to a moderately lagoonal one (reefal components less well
represented, fine indeterminate sediments more abundant) (Table 6).

The sandy lagoon floor region is exposed to high levels of wave and current action
due to the discontinuous nature of the reef rim at the north of the atoll and the textural traits
of sediments deposited there reflect this position. Extensively rippled coarse sands which
are near symmetrically skewed and well sorted dominate this area, interupted sporadically
by localised seagrass patches and small coral bommies. Sediments deposited here are
texturally mature; reflecting the relatively high levels of wave and current energy affecting
this area and the rarity of locally generated gravels. Speculation of a peripheral reef source
for these sediments is supported by high Homotrema, Amphistegina and alcyonarian
spicule content; these components normally originating from high energy reef zones and
confering a strong coral-type classification on these sediments. Ripple orientation suggests
that most of this material is transported from the northeast reef rim. Unlike in much of the
southern part of the lagoon these sediments remain submerged at all tidal stages and are
continually affected by waves and currents, enhancing their sorting potential. Similarly
well sorted and rippled sands are described from the Alacran Reef Complex, Mexico
(Kornicker and Boyd 1962) and the lagoon of Enewetok atoll (Wardlaw et al. 1991) and
are thought to have developed under similar environmental conditions.

Interisland channels link the high energy and highly productive outer reef flats to
the lagoon along the eastern and southern atoll margin and act as a conduit for
hydrodynamic energy and sediments entering the lagoon. Waves and currents forced over



the windward reefs are concentrated through these channels developing relatively high
levels of hydrodynamic energy which dissipates into the lagoon. The composition and
texture of sediments deposited through these channels is distinctly reefal, consisting of
sands and gravels derived from organisms typically located on high energy reefs such as
coral, coralline algae, alcyonarian spicules, Homotrema and Amphistegina. Not
suprisingly these sediments are unequivocally coral-type in composition. The relatively
high levels of hydrodynamic energy which affect these channels is reflected by the mean
grain size (0.02¢: the largest in the lagoon), and by the deficiency of fine sediments which
are continually winnowed and transported into the lagoon. Despite the winnowing of fine
sediments interisland channel deposits are generally poorly sorted and texturally immature,
reflecting the heterogeneity of contributing organisms and the continual addition of variably

‘degraded 'in-train’ clasts. Three samples from the Sonthern Passage illustrate-the coarse

nature, in-train addition and textural immaturity of sediments deposited in the interisland
channels, these samples (23, 24, 58) located in close proximity to each other and classified
respectively as a slightly gravelly coarse sand, a sandy gravel and a gravelly sand.

Coral-type sediments dominate the slightly gravelly medium sands which extend
from the interisland channels over the sand aprons and through much of the lagoon centre
(Figs. 4 and 6). Despite the continuity of these facies beyond the sand apron fringe (Fig.
2), however, textural gradients in samples collected from the sand aprons and changes in
minor component abundance suggest that sediments deposited over sand aprons are
allochthonous whilst those deposited beyond these features are autochthonous. The
evolution of analogous textural attributes in skeletal carbonate deposits due to either
hydrodynamic sorting or skeletal architecture is a principal shortcoming of carbonate
texture as an environmental discriminator (Stoddart 1969, Montaggioni et al. 1986) and is
well demonstrated here. The redeeming usefulness of textural gradients for environmental
interpretation is, however, also confirmed.

Extending into the lagoon over the sand aprons a marked decline in gravel content
(24.89% 1o 7.54%) and an increase in the proportion of sands (74.92% to 90.97%) and
muds (0.18% to 1.08%) occurs, conforming elegantly with models of lagoonal
sedimentation which predict a systematic decline in mean grain size with distance from the
reef rim (Frith 1983, Chevillon and Clavier 1988). Size-sorting is characteristic of
backreef sand aprons on other reefs where hydrodynamic energy levels abate into the
lagoon and are paralleled by a decline in mean grain size (Macintyre et al. 1987). Size-
sorting generally becomes evident from around the mid-range of sand aprons extending
into the Cocos (Keeling) Islands lagoon; sediments deposited at this distance from the
interisland channels sufficiently removed from locally generated sediment sources to attain
some degree of textural maturity. Textural gradients and composition indicate that the sand
aprons predominantly comprise allochthonous sediments shed from the reef rim. Similar
backreef sand deposits are described in the Pacific (Marshall and Jacobson 19885, Scoffin
and Tudhope 1985, Tudhope 1989), where medium grade coral sands also dominate the
lagoonward fringe. The penetration of allochthonous sand aprons in the Cocos (Keeling)
Islands lagoon is similar to that reported from other reefs (Scoffin and Tudhope 1985),
however at this atoll they are spatially restricted to where interisland channels link the outer
reef flat to the lagoon and concentric backreef facies belts do not develop.

The systematic decline of mean grain size ceases at the lagoonward margin of the
sand aprons essentially marking the limit of allochthonous slightly gravelly medium sand
penetration into the lagoon. Grain component data (Table 6) support the assertion that
allochthonous sediments (greater than mud-sized) penetrate the lagoon only as far as the
sand apron margins, sediments deposited over the lagoonward parts of the sand aprons
being generally rounded whilst those deposited beyond sand apron fringes are



predominantly angular and autochthonous. The range of the coralline algae/Halimeda
facies which extend from the interisland channels immediately east of West Island and
north of South Island further supports this speculation, and demonstrates the utility of
skeletal carbonates derived from habitat specific organisms as biogenic tracers of sediment
transport. These facies are chiefly comprised of rhodolith debris originating from these
channels which can be traced, and is size-sorted, towards the lagoonward sand apron
fringe. Kench (pers. comm) has suggested that the flood tidal wave entering the lagoon
from the north opposes currents flowing through the Southern Passage around the
lagoonward sand apron fringe, possibly impeding the transport of allochthonous sediments
beyond this point. Immediately beyond the lagoonward sand apron margins the textural
trends imposed by hydrodynamic sorting are corrupted by the addition of autochthonous
gravels-and sands-and-the-skeletal architecture of contributing organisms becomes the

principal determinant of facies texture. The lagoonal limit of allochthonous sediments may
be obscured, however, when they prograde over gravel bearing reefs such as those
fringing the blue holes behind the eastern reef islands. Here a band of gravelly sands has
developed when transported and sorted allochthonous sands mix with and are texturally
overwhelmed by gravels derived from the lagoonal patch reefs.

The irregular mosaic of textural facies covering the central part of the lagoon
suggests that sedimentation is chiefly governed by the locally abrupt bathymetric (and
environmental) change imposed by the blue holes and the sporadic occurrence of patch
reefs and lag gravel deposits. Formed as autochthonous material is deposited in situ, the
textural characteristics of these facies are dependant on the grain sizes yielded as
contributing organisms degrade, and the extent to which hydrodynamic conditions modify
these deposits. Sediments through the centre of the lagoon are characteristically poorly
sorted and coherent textural gradients are lacking, indicating the absence of significant
hydrodynamic modification. Low mud values suggest, however, that fines may be
winnowed from exposed deposits. The prevalence of coral debris through the centre of the
lagoon is convincingly demonstrated by the distribution of the coral-type compositional
facies, and the mosaic of textural facies which occurs through the same region can largely
be ascribed to the variable representation of epilithic gravels derived from lagoonal patch
reefs. The irregular bathymetry around the blue holes further ensures an erratic
distribution for textural facies in this part of the lagoon via its control of patch reef
distribution. Essentially these sediments are composed of medium to coarse coral sands
supplemented with varying amounts of epilithic coral gravels to form various grades of
gravelly sand and sandy gravel facies. The distribution of compositional facies other than
coral-type is related to the occurrence of the definitive organisms, the presence of which
may also impart distinctive textural properties. Isolated molluscan mud and coralline
algae/Halimeda facies in the central part of the lagoon, for example, occur where the
representation of their definitive components is high, and where largely intact and gravel
sized mollusc shells and Halimeda segments respectively induce local coarsening of facies
texture. Though coral detritus undoubtedly dominates most sediments through this area of
the lagoon, the extent to which it does so and the representation of minor components
varies considerably both within and between lagoonal environments (Tables 5 and 6),
largely reflecting the diffuse and weakly zoned distribution of contributing organisms and
the in situ deposition of derived sediments. Despite local variations in the representation
of minor components, however, the overwhelming dominance of coral debris and the
relative constancy of the component assemblage through the lagoon centre, which can be
attributed to the lack of strong environmental and hydrodynamic gradients, has determined
that except for at the extreme environments in this lagoon distinctive correlations between
lagoonal environment and compositional/textural facies are difficult to define. Widespread
facies-environment coincidence has been demonstrated in many carbonate emvironments
(Ginsburg 1956, Swinchatt 1965, Boscence et al. 1985), however similarly poor
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correlations between facies distribution and lagoonal environment are reported from other
lagoons where environmental/hydrodynamic condtions remain constant over most of their
area (Colby and Boardman 1989).

The distribution of fine sediments within the Cocos (Keeling) Islands lagoon
exhibits the strongest and most consistent textural/compositional facies and lagoonal
environment correlation. In contrast to other lagoons where muds winnowed from the
high energy peripheral zones accumulate in the lagoon centre (McKee et al. 1959, Roy and
Smith 1971), significant mud deposits in the Cocos (Keeling) Islands lagoon are confined
to the sheltered depositional environments in the lee of the windward islands. The
conceniration of mud facies behind windward reef islands is also described from the
. Tarawa atoll and Chesterfield Islands-lagoons-where-reef islands-effectively-isolate the—
lagoon in their lee from erosional waves and currents. In the Cocos (Keeling) Islands
fagoon muds are almost exclusively deposited in the seagrass meadow and intertidal sand
and mud flat environments in the lee of South Island and in the West Island telcks (Figs. 2
and 4), with a marked concurrence of environment and facies boundaries. In addition to
the sheltered position, the current reducing affects of benthic flora may enhance fine
sediment deposition over the seagrass meadows (Ginsburg and Lowenstam 1958,
Swinchatt 1965. Scoffin 1970), and intertidal periods of subaerial exposure may aid the
accumulation of fine sediments in the intertidal sand and mud flat areas. Adjas et al.
(1990) have demonstrated that most carbonate muds deposited in atoll lagoons are biogenic
rather than chemogenic, and it is likely that the muds deposited in the Cocos (Keeling)
Islands lagoon are produced by the attrition of larger skeletal carbonates (due to biological
and physical action). Although some of these fine sediments are no doubt produced in situ
it is likely that fines winnowed from elsewhere in the lagoon and transported to these sites
comprise a significant proportion of these muds. In these low energy settings 'currents of
delivery' rather than 'currents of removal' (Orme 1973) principally govern facies texture.
The muds are deposited with autochthonous gravels and sands derived from indigenous
molluscan, and to a lesser extent crustacean and coral gravels to form the gravelly
mud/molluscan mud facies depicted in Figures. 3, 4, 5 and 6. Abundant molluscan and
crustacean faunas presently inhabit the areas of the lagoon where muds are deposited and
generate significant quantities of gravel sized sediment, however coral gravels in these
deposits usually consist of lag material deposited under different physiographic conditions
(i.e. prior to being isolated from the reef rim by the reef islands) or else brought to the
surface by bioturbation. The skeletal remains of organisms indigenous to the seagrass
meadows and intertidal sand and mud flats are particularly well represented in the
recognisable fraction of these sediments (e.g. crustaceans, gastropods, Halimeda,
Marginipora), and are normally deposited reasonably intact. The fragile tests of the
epibiontic foraminiferan Marginopora, for example, remain relatively undamaged in these
deposits but are usually fragmented in sediments deposited elsewhere. Furthermore,
minor components derived from high energy reef areas (e.g. Homotrema, Amphistegina,
alcyonarian spicules) are poorly represented.

Muds are only nominally present outside of these areas, isolated deposits of finer
sediment elsewhere in the lagoon essentially developing due to local modification of the
hydrodynamic regime by seagrass beds, patch reefs and bathymetric change. Isolated
patches of slightly gravelly fine sand amongst the generally coarse sediments of the high
energy sandy lagoon environment can be directly attributed to patches of the seagrass
Thalassodendron, the blades of which reduce current velocity and induce the deposition of
finer sediment which is then stabilised by the root system (Scoffin 1970). The association
of molluscs (and molluscan debris) and seagrass evident in the Thalassia seagrass
meadows behind South Island is also apparent in the isolated Thalassodendron patches,
and sediments over these patches are compositionally classified as molluscan mud
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sediments. Muds also settle from suspension and accumulate at the base of many of the
blue holes where low energy levels predominate, and pockets of muddier sediment are
often deposited around patch reefs which impede current flow. These sediments are also
often compositionally classified as molluscan muds, however it is the domination of fine
indeterminate/mud sediments in these areas which confers this classification. The
deposition of muds adjacent to patch reefs due to their modification of lagoonal currents
has similarly been reported by Frith (1983) and Delasalle et al. (1985) and muds are
reported to accumulate at the bottom of lagoonal 'pools' in Fanning Lagoon (Roy and
Smith 1971). The concentration of fine sediments in sheltered areas behind the windward
islands and their general absence elsewhere suggests that ambient lagoonal currents are
sufficient to entrain and transport most fines out of the lagoon. The burrowing shrimps
~.which inhabit areas of the lagoon bedded by sand may aid this process by resuspending
sediments ejected from their burrows into the water column (Tudhope and Scoffin 1984,
Scoffin and Tudhope 1985, Tudhope 1589). A sizable sediment shute extending seawards
between Turk's reef and Horsburgh Island physically records the transport of sediment out
of this lagoon, although the character of these sediments is not known. The purging of
sands and muds outside of reef systems has, however, been well documented (Neumann
and Land 1975, Roberts and Suhayda 1983, Frith 1983).

It 1s interesting to note that the sediments deposited in this lagoon do not appear to
conform with the Sorby principle (Folk and Robles 1964) which predicts the generation of
size specific grain size populations controlled by the skeletal architecture of the contributing
organisms (Fig. 9). Non-conformance with the Sorby principle is not uncommon
however, with several authors reporting no apparent size specificity in sediments derived
from different constituent organisms (Clack and Mountjoy 1977, Flood and Scoffin 1978,
Gabrie and Montaggioni 1982). The ubiquity of coral sediments at all grain sizes is
apparent in Figure 9, and may possibly distort the recognition of distinctive component-
specific grain size populations simply by dominating grain counts.

CONCLUSION

The lagoonal sediments of the Cocos (Keeling) Islands are principally composed of
gravels and sands derived from corals with minor components such as mollusc, Halimeda
and rhodolith debris becoming locally important. Coral-type sediments overwhelmingly
dominate the lagoon, reflecting the lack of significant populations of carbonate producing
organisms other than coral on this atoll. Textural and compositional trends indicate that
allochthonous sediments are deposited in this lagoon only as far as the sand aprons and
sandy lagoon floor environments, beyond which sediments are almost entirely
autochthonous. Allochthonous coral-type sediments can be identified by the inclusion of
significant quantities minor components which are of distinctly high energy reef origin and
by size-sorting along established hydrodynamic gradients. The irregular distribution
patttern of textural facies in the centre of the lagoon reflects the deposition of epilithic
gravels and sands produced as sporadically distributed patch reefs and lag material
degrades in situ .

The concurrent distribution of the gravelly mud textural facies, the molluscan mud
compositional facies and the seagrass meadow and intertidal sand and mud flat
environments is remarkable, and largely reflects the extent to which depositional conditions
in these facies/environments are differentiated from the rest of the lagoon. Depositional
conditions in these areas are characterised by low hydrodynamic energy levels, either as a
function of position relative to the high energy interisland channels and/or as a function of
the current reducing action of benthic flora. Fine sands and muds, which may be both
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allochthonous and autochthonous are deposited in these zones with a coarse gravel
component derived from the remains of indigenous organisms such as gastropods and
crustaceans
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Table 1. Sedimentological data and statistics for 76 sediment samples from the Cocos
(Keeling) Islands lagoon. Key to abbreviations as for Table 2.
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Table 2.

samples per environment.

Summary of textural statistics for each lagoonal environment. (n) denotes numher of

Lagoonal Environment

I i L N v VI VIl voroo X
() ) ) (12) (R) (8) (3) (6) (8) (12)
(.02 0.87 .34 0.56 0.72 1.46 0.83 074 1.08
Mean (¢3) (0.68) (0.15) (1.02) (0.70) (1.22) ((0.02) (1.20) (0.2:4 ((1.R9)
Coarse Coarse Medium Coarse Coarse Medium Coarse Coarse Mediom
Sand Sand Sand Sand Sand Sand Sand Sand Sand
1.28 1.37 1.54 .52 1.41 2117 1.23 I 39 1.00
Sorting (0.45) (0.27) (0.53) (0243 (0.30) (0.04) (0.26y (0.30) (0.3
(03} PS PS PS PS PS VPS S S Mo
0.08 -0.15 -0.21 -0.04 0.05 -0.09 0.23 0.03 -0.10
Skewness (0.28) (0.20) (0.35) (0.17) (0.39) (0.05) (0.67) (0.35) (0.15)
NS CS CS NS NS NS FS NS NS
Gravel % 24.89 7.94 12.82 18.55 24.45 12.81 2.03 10.98 6.90
(20.71) (6.19) (10.46) (13.86) (25.59) (0.68) (2.68) (6.14) (7.93)
Sand % 74.92 90.97 73.35 80.29 73.36 63 96.63 88.13 92.58
(20.83) (6.78) (23.10) (13.38) (24.47) (6.40) (3.26) (5.96) (7.7
Mud % 0.18 1.08 13.70 115 218 22.19 1.33 .88 0.61
(0.45) (1.24) (19.16) (1.07) (2.84) (7.0%) (0.94) (1.16) (1.25)
Key
Soriing Skewness
PS Poorly Sorted NS Near Symmetrical
VPS Very Poorly Sorted CS Coarse Skewed
MS Moderately Sorted SCS Strongly Coarse Skewed
WS Weli Sorted FS Fine Skewed
MWS Moaderately Well Sorted SFS Strongly Fine Skewed
Environment
I Interistand Reef Flats Vi Intertida! Sand and Mud Flats
II Sand Aprons vl Algal Cavered Acropora Rubble
I Seagrass Meadows VI Massive Corals Interspersed with
Sandy Patches
IV Variable Coral and Algal Flat IX Sandy Lagoon Floor
A% Blue Hole Mosaic
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Table 3. Scdiment sample textural classification based on factor analysis. Bold numbers represent

samples witl the higliest loading on each factor axis.

Scdiment Classificanon

Samples

Factor One

SRS CYSYRTVAY .o VYT SN

Factor Three

Facior Four

Fuctor Fve

Factor Six

Vartable Mixtures

I, 6,12, 13, 14, 15, 16, 21, 24, 34, 50, 70, 134, 136, 141, 144, 148, 149, 150,
151, 153, 154, 1506, 167.

2, 3,9, 32,35, 38, 45, 46, 48, 49, 84, 89, 114, 128, 130, 143, 155, 163.

5, 14, 58, 06, 125, 152,

8, 23,29, 30, 164, 165, 169, 170, 171,

39, 117, 120, 122, lol.

57, 60, 104, 142, 147.

11, 65,79, 124, 126, 132, 145, 146, 157,

Table 4. Textural characteristics of sediment types discriminated by factor analysis. Abbreviations as

per Table 2. Standard deviations in parentheses.

Factor | 2 3 4 5 6
() 25 19 6 9 5 5
Var. % 37.7 23.4 12.3 6.8 5.8 5.3
Cum. Var.% 377 61.1 73.4 80.2 86 91.3
0.55 131 -0.74 063 1.82 2.49
Mean (9) (0.44) (0.55) (0.60) (0.35) (0.42) ©.41)
o 111 1.26 1.56 161 227 2.72
Sorting (») (0.24) {0.45) 0.42) (0.15) (0.14) (0.32)
Skewness 0.03 -0.14 0.53 0.07 -0.34 -0.33
(0.23) (0.23) (0.35) (0.15) (0.26) (0.54)
N 8.02 8.32 55.48 15.45 15.16 1.55
Gravel % (7.89) 9.51) (17.20) (5.10) (3.74) 227
91.51 90.29 43.84 82.83 49.32 91.60
Sund % (7.82) (10.12) (16.62) @.21) (14.97) (6.86)
( 0.46 1.25 0.67 1.82 35.52 6.83
Mud % (0.84) (1.46) (0.72) (1.19) (12.66) (7.05)
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Table 7. Component classification based on factor analysis. Bold numbers represent samples with

the highest loadings on the three factor axes.

Sediment Classification ‘ Samples

Factor One: 3,9, 10, 12, 24, 29, 32, 34, 38, 48, 50, 56, 63, 66, 77. 79. 81, Y, 104,
114, 120, 124, 125, 130, 132, 136, 138, 143, 144, 153, 156, 157, 163,

171, cv1s.
Factor Two: 39, 45, 49, 60, 147, 161, 117, 122.
Factor Three: 58. 164.
Hybnd: Factors One and Two 30, 57.

Hybrid: Factors One and Three 6, 165.

Hybrid: Factors Two and Three 108.
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Table 8. Component facies statistics.  Bold values denote representative component types.

Factor l 2 3 Hybrid Hybrid Hybnd
Var. % 69.9 20.6 9.5
Cum. Var. % 69.9 90.5 10X)
Sediment-type Coral -type Molluscan Coralline Coral- Coral-Coralline  Molluscan
(samples) Muds Algael Molluscan Mnd Algael Mud-Coralline
Halimeda Type Hybrid. Halimeda /L/g(]j'_/
Hybrid Halimeda
Hyhrid
Coral 59.9 27.21 29.84 42.59 45,72 31.01
(11.5) (11.97) (11.97) (2.38) (1.68)
Halimeda 9,38 9.54 16.38 13.76 8.14 14.76
(6.86) (6.08) (6.16) (0.15) (5.71)
Coralline Algac 6.47 2.33 32.84 2.92 25.94 12.71
(6.02) (4.02) (10.96) (0.87) (5.65)
Homotrema 0.52 0.16 0.21 0 0.04 0
0.71) (0.32) 0.28) {0.06)
Gastropods 4.97 7.51 0.67 6.94 5.25 5.93
(3.70) (4.77) 0.57) ((0.26) (2.73)
Pelecypods 2.15 .55 1.48 1.88 1.22 9.80
(2.57) (1.65) ©.77) (2.41) (1.57)
Unknown 2.97 3.04 6.30 4.60 5.23 3.70
Molluscs (1.62) (2.0) (0.38) (6.49) (1.93)
Marginopora 2.19 2.36 1.43 2.0 0.76 1.19
(2.60) (1.28) (1.49) ©.91) (0.78)
Amphistegina 171 0.05 0.33 0 0.19 0.08
4.70) 0.07) (0.31) .27
Unknown 1.19 3.24 1.84 1.07 [.48 2.23
Foraminiferans. (1.28) (2.29) (1.60) (0.16) (1.97)
Annelida 0.33 0.04 0.1 0 0.04 0.07
(0.74) 0.1) 0.17) (0.06)
Alcyonarians 0.92 0.3 0.72 0.54 0.5 0.25
(1.26) (0.35) ©0.22) (0.06) (0.5)
Crustaceans 0.88 3.05 0.37 1.25 1.16 1.84
(1.14) (2.37) (0.52) (0.42) (1.64)
Echinoids 0.55 0.02 0.28 0.06 0.67 0.09
(0.78) (0.03) (0.29) (0.08) (0.13)
Indeterminate 5.88 39.62 7.20 22.41 3.66 16.36

(6.02) (12.83) (6.84) (3.74) (5.18)
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Figure 1.

Location map of the Cocos (Keeling) Islands, showing bathymetric precincts.
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TEXTURAL TYPES

601 a) Sample 15 Slightly Gravelly b) Sample 143 Siightly Gravelly
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Figure 4. Grain size histograms of samples with the highest loadings on a) factor 1; b)

factor 2; ¢) factor 3; d) factor 4; e) factor 5; f) factor 6.
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Figure 5. Textural facies distribution, Cocos (Keeling) Islands lagoon.
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“a) Facitor 1 " 'b) Factor 2 ¢) Factor 3
Sample 12 Sample 58 Sample 122
Coral Type Sediments Coralline Algae / Bolluscan Muds

Halimeds Sediments

Coral
\ Goralline Algae / Halimeda

Mollugcs

Miscellansous
Indeterminate

Figure 6. Pie charts showing sediment composition of samples with the highest loadings
on a) factor 1; b) factor 2; c¢) factor 3.
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Figure 7. Compositional facies distribution, Cocos (Keeling) Islands lagoon.
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LAGOON SEDIMENT COMPOSITION
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Figure 8. Histogram comparing of skeletal composition of the Cocos (Keeling) Islands
lagoon to other carbonate lagoons. Data for other lagoons from: Bikini - Emery
et al. 1954, Enewetok - Emery et al. 1954, Johnson Atoll - Emery 1962,
Florida - Ginsburg 1956, Alacran Reef - Hoskin 1966.
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Figure 9.
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Histogram showing grain size distribution of sample 104 and the size
distribution of skeletal components.



Figure 10. -0.5¢ fraction of sediments from various parts of the Cocos (Keeling)
Islands lagoon. (a) Sample 24 from the interisland channel. Note the dominance
of coral components. Mixed rounded and angular sediments indicative of texturally
immature deposit. (b) Sample 58, collected from the lagoonward margin of the
interisland channel. Samples predominantly rounded, reflecting the high levels of
hydrodynamic energy through this zone. Note rhodolith debris. (c) Sample 120,
collected from the seagrass meadow behind South Island. Note the abundance of
molluscan material and Halimeda flakes. Angular fragments common. (d)
Sample 70 collected from the centre of the lagoon. Note the dominance of coral
which is variably rounded and encrusted with coralline algae. Halimeda flakes,
mollusc debris, echinoid spines also apparent. Key: C - coral; E - echinoid; H -
Halimeda, M - Marginopora; Mg - gastropod; Mp - pelecypod; R - rhodolith.





