

Australian Government

Geoscience Australia

Paterson AEM Survey: Planned Acquisition and Interpretation

Adrian Fisher

Visit to Western Australia, August 2007

Outline

- 1. Onshore Energy Security Program
- 2. Regional AEM surveys
- 3. Paterson AEM Survey
- 4. The importance of downhole conductivity data
- 5. Industry collaboration

Onshore Energy Security Program

- Designed to promote exploration for energy commodities
- Acquisition of pre-competitive geophysical data including radiometrics, magnetics, seismic and AEM

Aug 2007 – Paterson AEM

Regional AEM Surveys

 Proposed regions for AEM surveys were chosen according to:

- uranium potential
 - the presence of suitable targets for AEM

 various logistical reasons

Paterson AEM Survey

- The survey area was designed to cover as much of the Paterson Province as possible
- The main technical limiting factor was depth of covering Canning Basin sediments
- No data will be acquired over the Rudall River National Park
- East west flight lines with variable spacing:
 - Areas of lower risk: 1 km
 - Areas of higher risk: 2 km
 - Company paid infill areas: 200-400 m

Objectives of the AEM Survey

- The survey will map the conductivities of different geological units under cover
- It will help improve our understanding of the regions
 geology and mineral potential
- The data will assist with interpretations regarding:
 - the presence of graphitic units in the Rudall Complex
 - the nature of the basin-basement unconformity
 - the location of major structures
 - the extent of Permian palaeovalleys and other regolith materials

Schematic cross section

Aug 2007 – Paterson AEM

AEM Survey Products

- Data will be released in stages:
 - First release: Regional AEM data
 - After 1 year remaining confidential: Company infill AEM data
- Other products that require complementary data are:
 - Geoscience Australia Layered Earth Inversions (LEI)
 - Geological interpretations (maps and reports)

Making inversions less ambiguous:

- Many different conductivity models can fit the data
- Borehole conductivity data allows the model to be assessed and improved

How is borehole conductivity data used?

- 1. Borehole conductivities provide a better basis for processing AEM data (they help establish a realistic conductivity reference model)
- 2. They allow the inversion result to be assessed against an independent dataset
- 3. They provide downhole relationships between conductivity and geology, which assists interpretation
- 4. They allow the development of a 3D geological framework to improve processing

Geoscience Australia

The inversion process

- Run the inversion and assess the result (conductivity model) against downhole conductivity logs
- Then change the parameters of the inversion and re-run
- Continue to iteratively run inversions until the model and the downhole conductivities correspond

Aug 2007 – Paterson AEM

Complementary Data - Geology

- Geological information is also required to interpret the data and inversion results:
 - Downhole lithological descriptions and gamma-ray logs
 - Depth to the water table and presence of aquifers
 - Salinity of groundwater
- Coincident geological and conductivity information
 is best in providing a direct relationship
- Boreholes lacking conductivity logs are also very useful for interpretation
- Sufficient borehole density will allow the construction of 3D geological maps

Industry Collaboration

• Stages of collaboration:

- 1. Offer for infill flying
- 2. Request for industry data existing AEM and drillhole data
- 3. Release of AEM data
- 4. Collaborative geophysical logging program
- 5. Collaborative drilling program
- 6. Discussion with industry on geological interpretations
- 7. Release of final products

Collaboration will result in:

- improved AEM inversions
- better geological interpretations and products
- a regional synthesis

Future work

- Northern WA Project
 - Project Leader: Richard Blewett
 - Geological interpretations of the Paterson Province
 - Build on AEM data and previous GA work (Paterson Project)
- Uranium Project
 - Project Leader: Roger Skirrow
 - Investigate the uranium systems present in the Paterson Province
 - Build on AEM interpretations

