Constrained 3D inversion of potential field data from the Olympic Cu-Au province, South Australia

Nick Williams Patrick Lyons Richard Lane Matti Peljo

17th Australian Geological Convention
Hobart, February 2004
Gravity and magnetic data see through cover
but we need new tools to understand the geology
Olympic Province Crystalline Basement

- Archaean metamorphic rocks
- Proterozoic metamorphic rocks
 - Hutchison Group metasediments and BIFs
 - Wallaroo Group metasediments & metavolcanics
- 2 major magmatic events
 - 1.85 Ga Donington Suite granitoids
 - 1.59-1.58 Ga Hiltaba Suite granites, gabbros, and Gawler Range Volcanics
- Extensive Mesoproterozoic to Cambrian cover: up to 3 km thick, but generally <1 km
Potential Field Interpretation

- Traditional potential field interpretation relies on interpreter’s skill, knowledge, objectivity, and consistency
- Profile forward modelling provides basic architecture but only in thin strips
Potential Field Interpretation

- Traditional potential field interpretation relies on interpreter’s *skill, knowledge, objectivity, and consistency*.
- Profile forward modelling provides basic architecture but only in thin strips.
- *Smooth model inversion* calculates a smooth 3D property distribution from 2D data subject to a range of parameters.

\[
\text{model} = f^{-1} (\text{data})
\]

Gravity/magnetic data \rightarrow Parameters \rightarrow 3D geology or model
Why Invert?

- 3D structure – difficult to connect individual 2D cross-sections
- Can be guided by existing knowledge
- Rigorously and objectively account for all features in the data
- Ensure consistency between models and observations
- Allow for systematic errors in the data
- Show where models are not compatible with data
Constrained Inversion Process

Solid geology, seismic structure, cross-sections, drilling, etc

Build model

Create reference

3D geological model: structures and lithologies

3D reference model: physical properties and inversion parameters

(Source: Lane, 2002)
Constrained Inversion Process

1. **Solid geology, seismic structure, cross-sections, drilling, etc**
2. **Build model**
 - 3D geological model: structures and lithologies
3. **Create reference**
 - 3D reference model: physical properties and inversion parameters
4. **Inversion**
 - 3D inversion model
5. **Constraint**
6. **Compare and update**

Source: Lane, 2002

Geoscience Australia
Inversion Concepts

- Successful inversion *will always fit the data* (within a defined data error) within an acceptable misfit
 - Remanent magnetisation causes problems

- Constrained inversion *will* fit the data while matching the reference model as closely as possible
 - ‘smallness’: how closely to match the reference model (higher smallness values = closer match)

- If it is *not* possible to match both the *reference model* and the *data*, the inversion moves away from the reference until it *can fit the data*
 - Can’t be deceived by bad models
Area Definition

Volume of interest:
150 km × 150 km × 12 km
= 270,000 km³

Padded extent:
198 km × 198 km × 18 km
= 705,672 km³

- Use 1 km × 1 km × 0.5 km cells for inversion
 = 1,411,344 cells
Observed and Predicted Gravity Data

Invert

Forward model
Observed and Predicted Gravity Data

Misfit range ~5% of data range

17th AGC Hobart 2004

Geoscience Australia
Observed and Predicted Magnetic Data

Misfit range ~6% of data range
Unconstrained Inversion Section:
Olympic Dam (681500mE)

Deposit: high density, low susceptibility

Density

Elevation (AHD)

0

-5

km

2.67

2.71

2.7 g/cm³ contour in black

Magnetic susceptibility

0

-5

km

0.01

0.1

0.035 SI contour in white

South

6620000

6640000

6660000

North

(Source: Lane, 2003)

17th AGC Hobart 2004

Geoscience Australia
Constrained Gravity Inversion (-1000 m slice)

Reference Model – Density

Inversion Model – Density

50 km

Density (g/cm³)

2.5 2.7 2.9

Difference (g/cm³)

-0.1 0.0 +0.1

Blue: reference too high
Red: reference too low

17th AGC Hobart 2004

Geoscience Australia
Constrained Magnetic Inversion (-1000 m slice)

Reference Model – Susceptibility

Inversion Model – Susceptibility

50 km

Susceptibility (SI)
0.002 0.01 0.05

Difference (SI)
-0.05 0.0 +0.05

Blue: reference too high
Red: reference too low

17th AGC Hobart 2004

Geoscience Australia
Susceptibility + Density = Geology?

(Source: Hanneson, 2003)
Susceptibility + Density = Geology?

(Source: Haneson, 2003)
Density of Barren Host Rock

- Can subtract magnetite from the model to determine the density of the host rock
Density of Barren Host Rock

- Can subtract magnetite from the model to determine the density of the host rock

\[
\rho_{\text{host}} = \frac{\text{Mass}_{\text{cell}} - \text{Mass}_{\text{mgt}}}{\text{Vol}_{\text{cell}} - \text{Vol}_{\text{mgt}}}
\]

\[
\rho_{\text{cell}} - (\rho_{\text{mgt}} \times \%_{\text{mgt}})
\]

\[
\frac{1 - \%_{\text{mgt}}}{1 - \%_{\text{mgt}}}
\]
Possible Magnetite and Haematite Map

1% “magnetite”
Includes all susceptible minerals as their magnetite equivalent

1% “haematite”
Includes haematite, sulphides, other dense minerals, and remanent magnetisation
Possible Magnetite and Haematite Map

1% "magnetite"
Includes all susceptible minerals as their magnetite equivalent

1% "haematite"
Includes haematite, sulphides, other dense minerals, and remanent magnetisation

10 km
The Future

- Need improved physical property databases and understanding
 - More company/state survey/university/GA measurements

- Improve model detail
 - More units
 - Better geometries

- Recently acquired seismic lines (250km on 2 lines)
 - Test predictive capability of regional inversions
 - Improve geometries
Create 3D Maps Through Cover!

- Potential field inversions can make 3D maps of
 - Alteration
 - Lithology
 - Structure
 - Anomalous entities

- BUT ... you NEED
 - Good density and susceptibility measurements
 - Good gravity and magnetic coverage
 - Some geological understanding (drilling, seismic, mapping)

- Basic inversions are useful, but better inputs will give more reliable 3D maps
Thank You

Acknowledgements
Nick Direen Peter Milligan Tim Moore