Case Study:

The Gorgon CO₂ Injection Project

Scott Ryan
Senior Reservoir Engineer
Gorgon CO₂ Injection Project
Key Messages

- The Gorgon Project Joint Venture Partners have agreed to construct the world’s largest subsurface CO\textsubscript{2} disposal facility on Barrow Island, off Australia’s northwest coast.

- Subsurface disposal of CO\textsubscript{2} requires many of the same technologies and skills as other major petroleum developments:
 - Data acquisition and subsurface evaluation using multidisciplinary subsurface teams
 - Coordinated approach to field development planning and uncertainty management
 - Integrated reservoir surveillance planning to monitor subsurface CO\textsubscript{2} behaviour following injection

- The CO\textsubscript{2} Injection Project was therefore treated with the same attitude and approach as for the gas field development plans.

- The technical feasibility of CO\textsubscript{2} disposal beneath Barrow Island has undergone several phases of Joint Venture and State Government sponsored peer review.
Gorgon Project Development Concept

- Gas produced from subsea wells in Gorgon & Jansz fields (>2 Bcf/day gross)
- LNG (15 MTPA) + Domestic Gas (300 TJ/d) processed & exported from Barrow Island
- Gorgon gas ~14% CO₂
- Jansz gas <1% CO₂
- CO₂ separated and injected into Dupuy formation below Barrow Island (1.6-2.4 Tcf total CO₂)
- Project now under construction
- First gas production 2014
- Additional discovered fields under evaluation for future tieback
Reservoir CO₂ Injection Project

- The first major project in Australia to significantly reduce project emissions by the underground injection of carbon dioxide
- Project emissions expected to be reduced by approximately 40% (~3.4-4 MTPA CO₂-equivalent)
- About A$2 billion will be invested in the design and construction of the CO₂ project
- Costs per tonne remain less expensive than alternate abatement options
- Number of world firsts
 - First geosequestration legislation
 - First CO₂ injection project to undergo detailed environmental impact assessment (including public review and comment)
 - Largest subsurface CO₂ disposal project in the world

![Bar chart showing CO₂ emissions for different projects and improvements.](chart.png)
Site screening and selection

Four criteria considered:

- **Containment risk** – e.g. security of top seal, distance to faults, number / condition of existing well penetrations
- **Storage capacity** – e.g. gross rock volume, regional structure capacity, reservoir architecture, connected aquifer extent
- **Injectivity** – e.g. permeability, thickness and extent of target reservoir sands
- **Risk to other assets** – e.g. risk of fluid / pressure interference with other operating, discovered or undiscovered hydrocarbon fields

19 sites / concepts initially assessed in screening study:

- Saline aquifers
- Existing hydrocarbon fields
- Enhanced Oil Recovery opportunities

Five sites further assessed with screening-level simulation studies

Barrow Island Dupuy Formation only site that adequately satisfied all criteria
CO₂ Reference Case Development Plan

- Project sited on north-east of island
- Nine CO₂ injection wells (with space for nine more) from three drill centres
- Four water production wells + water injection wells
- Peak stream day CO₂ rate: 220 MMscf/d
- CO₂ volume: 1.6 – 2.4 Tcf (~ 80-130 million tonnes)

Reservoir Surveillance:
- Surveillance wells - two initially plus two in later field life
- Repeat 4D seismic (if successful) + Vertical Seismic Profiles
- Soil Gas surveys

- Abandonment of existing Dupuy wells in plume area; program for ensuring existing well penetrations in the plume area do not provide leakage pathways
- Commitment to make data from the ongoing monitoring available to the public
Barrow Island Stratigraphy

- Site selection was vital – Dupuy has adequate permeability for injectivity but low enough for good residual gas trapping
- Adequate existing subsurface data
- Several seals between injection zone and surface

Dupuy Formation

- Proposed injection interval

CO₂ Injection Interval – Barrow Island

Operated by Chevron in joint venture with ExxonMobil, Shell, Chubu Electric, Osaka Gas and Tokyo Gas
Reservoir Simulation – Testing Development Plan

- CO₂ plume migration influenced by pressure management wells, reservoir quality & distribution, buoyancy, rate of dissolution
- Effects incorporated into reservoir simulation models
- Wide range of subsurface uncertainties investigated using:
 - Full field models (testing overall development plan)
 - Sector models (investigating specific effects, e.g. near-wellbore)
- Development plan tested against two main criteria:
 - **INJECTIVITY** – i.e. scheme must handle rate of produced CO₂ from Gorgon
 - **CONTAINMENT** – i.e. scheme must retain total volume of CO₂ in the subsurface
Pressure Management Concept

- Pressure management required to reduce impact of rising pressure on CO₂ injection performance:
 - Maintain injection rates
 - Avoid reaching bottom hole pressure limit

- 100% offtake balance not necessary – expect large connected aquifer to "absorb" much of the pressure increase

- Produced water injected into overlying Barrow Group (depleted)
Growth of CO$_2$ plume over time

- Plume movement influenced by water offtake, reservoir depositional trends and structure
- Growth in plume area is rapid during injection, but limited following site closure
- CO$_2$ concentrated in centre, very diffuse at edges
Growth of CO₂ plume over time

- Plume movement influenced by water offtake, reservoir depositional trends and structure
- Growth in plume area is rapid during injection, but limited following site closure
- CO₂ concentrated in centre, very diffuse at edges
Growth of CO₂ plume over time

- Plume movement influenced by water offtake, reservoir depositional trends and structure
- Growth in plume area is rapid during injection, but limited following site closure
- CO₂ concentrated in centre, very diffuse at edges

Net CO₂ Thickness: \(\Sigma S_g \cdot \Phi \cdot h \)

YEAR 0020

Operated by Chevron in joint venture with ExxonMobil, Shell, Chubu Electric, Osaka Gas and Tokyo Gas
Growth of CO₂ plume over time

- Plume movement influenced by water offtake, reservoir depositional trends and structure
- Growth in plume area is rapid during injection, but limited following site closure
- CO₂ concentrated in centre, very diffuse at edges

Net CO₂ Thickness: Σ S_g.Φ.h

Operated by Chevron in joint venture with ExxonMobil, Shell, Chubu Electric, Osaka Gas and Tokyo Gas
Growth of CO₂ plume over time

- Plume movement influenced by water offtake, reservoir depositional trends and structure
- Growth in plume area is rapid during injection, but limited following site closure
- CO₂ concentrated in centre, very diffuse at edges

Net CO₂ Thickness: Σ S₉Φh

Line of section

Operated by Chevron in joint venture with ExxonMobil, Shell, Chubu Electric, Osaka Gas and Tokyo Gas
Growth of CO₂ plume over time

- Plume movement influenced by water offtake, reservoir depositional trends and structure
- Growth in plume area is rapid during injection, but limited following site closure
- CO₂ concentrated in centre, very diffuse at edges
Growth of CO₂ plume over time

- Plume movement influenced by water offtake, reservoir depositional trends and structure
- Growth in plume area is rapid during injection, but limited following site closure
- CO₂ concentrated in centre, very diffuse at edges

Water production well (proj.)
CO₂ injection wells (proj.)

Net CO₂ Thickness: $\Sigma S_g \Phi \cdot h$

YEAR
0500

© Chevron 2010

in joint venture with ExxonMobil, Shell, Chubu Electric, Osaka Gas and Tokyo Gas
Growth of CO₂ plume over time

- Plume movement influenced by water offtake, reservoir depositional trends and structure
- Growth in plume area is rapid during injection, but limited following site closure
- CO₂ concentrated in centre, very diffuse at edges
Managing Risk – Reservoir Surveillance Objectives

- Reservoir surveillance options have been selected to assist responsible reservoir management.
- Reservoir surveillance focused on early identification of uncertainty “signposts” (as per Uncertainty Management Plan).
- When signposts are identified, then mitigation plans can be implemented to ensure the injected carbon dioxide continues to be properly managed.
- Integration of reservoir surveillance and reservoir simulation data will assist the demonstration of site integrity.
Integrated Monitoring Plan

- **CO₂ Injection & Pressure Management Wells**
 - Wellhead pressure and flow rate
 - Continuous down-hole pressure
 - PLT & casing/cement integrity logs

- **Surveillance Wells – Vertical distribution and volumetric calculation**
 - Continuous downhole pressure (Barrow Gp)
 - Saturation & casing/cement integrity logs
 - Vertical Seismic Profiling (VSP)

- **4D Surface Seismic – Lateral extent and broad vertical distribution**
 - 3D baseline survey
 - Repeat 2D and 3D surveys determined by viability of seismic for monitoring plume position

- **Soil Gas - Verification**
 - Soil gas flux sampling over the 3D seismic source grid and at potential near-surface seepage points

- **Surface – Safety & environment**
 - Pressure sensors and CO₂ detection equipment within compression and pipeline facilities

Operated by Chevron in joint venture with ExxonMobil, Shell, Chubu Electric, Osaka Gas and Tokyo Gas
Reservoir Monitoring, Risk Mitigation & Site Closure

- Monitoring aimed at identifying signposts so that effective mitigation actions can be implemented
- Site closure is the point where operational responsibility ends and is marked by satisfaction of site closure criteria
 - Criteria to be determined by legislation
 - Future land use objectives can be met
 - Residual risk of leakage and resulting liability is acceptably low
 - Any ongoing costs are low or otherwise appropriately managed
 - Liability transferred to State and Commonwealth Governments

Conceptual Risk Profile

- Injection Period
- Post-Injection Period
- Post-Closure Period

Risk

Time

Site Closure

Monitoring aimed at identifying signposts so that effective mitigation actions can be implemented.

Site closure is the point where operational responsibility ends and is marked by satisfaction of site closure criteria.

Criteria to be determined by legislation.

Future land use objectives can be met.

Residual risk of leakage and resulting liability is acceptably low.

Any ongoing costs are low or otherwise appropriately managed.

Liability transferred to State and Commonwealth Governments.

Monitoring aimed at identifying signposts so that effective mitigation actions can be implemented.

Site closure is the point where operational responsibility ends and is marked by satisfaction of site closure criteria.

Criteria to be determined by legislation.

Future land use objectives can be met.

Residual risk of leakage and resulting liability is acceptably low.

Any ongoing costs are low or otherwise appropriately managed.

Liability transferred to State and Commonwealth Governments.

Monitoring aimed at identifying signposts so that effective mitigation actions can be implemented.

Site closure is the point where operational responsibility ends and is marked by satisfaction of site closure criteria.

Criteria to be determined by legislation.

Future land use objectives can be met.

Residual risk of leakage and resulting liability is acceptably low.

Any ongoing costs are low or otherwise appropriately managed.

Liability transferred to State and Commonwealth Governments.

Monitoring aimed at identifying signposts so that effective mitigation actions can be implemented.

Site closure is the point where operational responsibility ends and is marked by satisfaction of site closure criteria.

Criteria to be determined by legislation.

Future land use objectives can be met.

Residual risk of leakage and resulting liability is acceptably low.

Any ongoing costs are low or otherwise appropriately managed.

Liability transferred to State and Commonwealth Governments.

Monitoring aimed at identifying signposts so that effective mitigation actions can be implemented.

Site closure is the point where operational responsibility ends and is marked by satisfaction of site closure criteria.

Criteria to be determined by legislation.

Future land use objectives can be met.

Residual risk of leakage and resulting liability is acceptably low.

Any ongoing costs are low or otherwise appropriately managed.

Liability transferred to State and Commonwealth Governments.
Concluding Messages

- The Gorgon CO₂ Injection Project is first of its kind in many technical and regulatory aspects.

- The same attitude and approach to subsurface studies and development was adopted for the CO₂ project as for the hydrocarbon fields.

- Much effort was invested into project assurance for internal and external stakeholders.

- Pressure management wells are fundamental to the development plan.

- Reservoir surveillance is important to maintain performance and to capture lessons learned.
Acknowledgements

The authors wish to thank Chevron and the Gorgon Joint Venture Participants:

- ExxonMobil
- Shell
- Chubu Electric
- Osaka Gas
- Tokyo Gas