AUSLIG - Geodesy

Space Geodesy Analysis Centre

1999
AUSLIG Geodesy

- GPS
- SLR
- DORIS
- GLONASS
- VLBI
- IERS
- GSFC
- PCGIAP
- Absolute gravity
AUSLIG Geodesy

- GPS
 - IGS Regional Network Associate Analysis Centre
 - Global POD, EOP, regional solutions
 - LEO POD
 - Absolute Sea Level Monitoring Campaigns
GPS Processing Site Report - ALIC

Computed Velocities:
North: 76.1 mm/year (sigma 0.2)
East: 31.9 mm/year (sigma 0.2)
Up: -3.2 mm/year (sigma 0.2)

Repeatability Plots (metres)
GPS Processing Site Report - DST1

Computed Velocities:
North: 73.6 mm/year (sigma 0.2)
East: 37.8 mm/year (sigma 0.2)
Up: 4.6 mm/year (sigma 0.2)

Repeatability Plots (metres)
Estimated parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SLR</th>
<th>DORIS</th>
<th>GPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station Coordinates</td>
<td>WPLTN stations</td>
<td>Asia-Pacific stations</td>
<td>Global and Asia-Pacific stations</td>
</tr>
<tr>
<td>UT and pole position</td>
<td>Daily</td>
<td>Daily</td>
<td>Daily</td>
</tr>
<tr>
<td>State vectors</td>
<td>30-day arc</td>
<td>5-day arc</td>
<td>1-day arc</td>
</tr>
<tr>
<td>Solar Radiation</td>
<td>One per arc</td>
<td>One per arc</td>
<td>One per day</td>
</tr>
<tr>
<td>Pressure Scale factor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drag</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Acceleration</td>
<td>Once per day</td>
<td>Once per day constant</td>
<td></td>
</tr>
<tr>
<td>Measurement Biases</td>
<td>Pass by pass range and time biases.</td>
<td>Pass by pass range rate and time biases.</td>
<td>Carrier Phase Ambiguities.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cycle slips.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tropospheric scale factor every two hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>at every station.</td>
</tr>
</tbody>
</table>

- Reference stations constrained to ITRF96 at 1mm
AUSLIG Geodesy

Normal Equations (EMATRIX)

\[\text{SLR}_{\text{monthly}} \{ \text{Lageos 1/2, Starlette, Stella, Glonass} \} \]

GPS\(_{\text{daily}} \} \}

DORIS\(_{\text{daily}} \} \}

Normal Equations (SINEX)

\[\text{VLBI}_{\text{daily}} \} \}

Reference Frame

Terrestrial Ties

Combined Solution
AUSLIG Geodesy

• GPS results
 – Global MicroCosm
 – Orbit (versus IGS final product)
 • RMS 7 - 10 cm radially
 • RMS 15 - 25 cm along and cross track
 – Station coordinates (weekly combined)
 • RMS 9 - 14 mm difference to MIT SSC
 • 5, 7, 6 mm (N,E,U) repeatability
AUSLIG Geodesy

- SLR
 - ILRS Associate Analysis Centre
 - Lageos1, Lageos2, Stella, Starlette, Etalon-1, Etalon-2, Glonass
 - Station performance monitoring
 - Five day EOP
 - Multi-satellite combined solutions
AUSLIG Geodesy

Lageos-1, Oct. 1998, SLR Post-Fit Residuals
AUSLIG Geodesy

• SLR results
 – RMS postfit residuals for Lageos-1 and Lageos-2, 1 month arc; 5 - 7 mm
 – Stromlo and Yaragadee; 2 - 4 mm
 – Transformed to ITRF96 at the combination stage
 – 3-D RMS for station coordinates 9 - 13 mm for combined monthly Lageos-1 and Lageos-2
 – month to month repeatability of station coordinates; 15mm
AUSLIG Geodesy

Mount Stromlo Range and Time Biases (Oct. 1998)

Yaragadee Range and Time Biases (Oct. 1998)
AUSLIG Geodesy

- DORIS
 - SPOT-2 (SPOT-4 to follow)
 - IGN/CSTG results
AUSLIG Geodesy

- DORIS results
 - 51 station solutions
 - rms fit 5-day arc 0.8 mm/sec
 - matching CNES, UT-CSR 0.5 mm/sec for 1 day arc
 - 1-5 mas x-pole (wrt IGS)
 - 1-3 mas y-pole (wrt IGS)
 - fits ITRF SSC at the 7mm level
 - 3,6,2 mm E,N,U respectively
AUSLIG Geodesy

• GLONASS
 – IGEX analysis centre
 – SLR orbits
 – Microwave analysis system development
AUSLIG Geodesy

- **GLONASS results**
 - SLR solutions for IGEX98
 - 8 GLONASS satellites
 - 10 day arcs being computed
 - orbit parameters
 - state vector
 - solar radiation scale factor
 - y-bias
 - range and time bias
AUSLIG Geodesy

• GLONASS results…
 – reference frame CSR L06
 – global parameters estimated in Lageos-2 solutions
 – 2-3cm fit
AUSLIG Geodesy

• GLONASS results…
 – rms difference from CODE microwave solution at 20 - 30 cm level (radially)
 • reference frame
 • EOP
 • 10 day arcs
 • no knowledge of SRP models
AUSLIG Geodesy

• IERS
 – Combination solutions
 • SLR, GPS and DORIS solutions to ITRF
 – ITRS time series project
 – submitted SLR and GPS solutions
 – Local ties
 • telescope IVP determination software
AUSLIG Geodesy

- VLBI
 - preparing for IVS analysis centre
 - VLBI SINEX combined with satellite techniques
AUSLIG Geodesy

• GSFC
 – Partners in long term time series of combined solutions
 – AUSLIG July 1995 onwards
 – GSFC prior to 1995
AUSLIG Geodesy

• PCGIAP
 – Analysis centre for GPS, SLR and DORIS
 – Densification of the ITRF in the Asia-Pacific Region
AUSLIG Geodesy

• Absolute gravity
 – analysis of the February 1996 absolute gravity data
 – further observations
AUSLIG Geodesy

• Future
 – relative weights of SLR solutions
 – relative weights of combined technique solutions
 – Antarctica
 • near real time monitoring ice movement with DORIS
 – IVS analysis centre
AUSLIG Geodesy

• Future…
 – LEO combined solutions by collocations of techniques at the space-craft -- significant recommendation of GEMSTONE
 – altimetry data analysis for gravity anomaly recovery over oceans/ocean-geoid (within 2 years)
 – gravity field estimation (within 2 years) using combinations of GPS/LEO, SLR, and DORIS -- CHAMP, GRACE
AUSLIG - Geodesy

Space Geodesy Analysis Centre

1999