Geophysical delineation and mineral potential of mafic-ultramafic intrusions in the Arunta Region

Tony Meixner, Dean Hoatson, Yanis Miezitis, Subhash Jaireth & Jon Claoué-Long

Andrew Young Hills
Three major studies

Dean Hoatson, Jon Claoué-Long & Shen-su Sun
- Geological setting, event chronology & mineral potential

Tony Meixner & Dean Hoatson
- Geophysical interpretation – total subcropping extent, depth of cover, orientation & internal structure

Yanis Miezitis, Subhash Jaireth & Dean Hoatson
- Mineral potential modelling

Acknowledgements:
- Colleagues at Northern Territory Geological Survey
- Various exploration companies in the Arunta Region
Distribution of major Arunta mafic-ultramafic intrusions
Andrew Young Hills

High level - fractionated intrusion
Compositionally layered
Undeformed
1635±9 Ma
Crustal contamination
Commingling of mafic-felsic magmas
Early history of S saturation

Andrew Young Hills intrusion
- Gabbronorite, gabbro, quartz
 - gabbro, tonalite, diorite
- Hornblende granite
Andrew Young Hills
Mount Chapple Metamorphics

Large composite mafic-intermediate-felsic granulite body
Central portion dominated by mafic granulite
Felsic unit: 1771 ±10/-6 Ma
Early history of S saturation
Mafic unit: 1774.0 ± 1.9 Ma
Mount Hay Granulite

Sub-horizontal elongate balloon-like body

Primary crystallisation age: 1803±5 Ma
Deformation event: 1700±17 Ma

Mount Hay Granulite intrusion

- **Gabbro**
- **Mafic granulite**
- **Mafic granulite, garnet gneiss**

Anburla Anorthosite

Anorthosite
Mount Hay Granulite

Crustal contamination
Commingling of mafic-felsic magmas
Early history of S saturation

Mount Hay Granulite intrusion
- **Gabbro**
- **Mafic granulite**
- **Mafic granulite, garnet gneiss**
- Anbula Anorthosite
- Anorthosite

June 2006 – Evolution and Metallogenesis of the North Australian Craton
Attutra Metagabbro

Relatively homogeneous weekly recrystallised metagabbro

Preservation of original igneous textures

1786.4 ± 4.2 Ma

S undersaturated

PGE-bearing magnetite layers
Mordor Complex

Undeformed composite plug-like body

1133 ± 5 Ma

PGE-bearing sulphide mineralisation

Geoscience Australia

June 2006 – Evolution and Metallogenesis of the North Australian Craton
Summary of geophysical signatures

- Intrusions coincident with high gravity anomalies
- Intrusions generally have medium to high magnetic anomalies
- Magnetic signatures are dependant on metamorphic grade and post emplacement deformation history

 Low grade: readily differentiated from country rock primary igneous features
 - Andrew Young Hills (macroscopic layering)
 - Mordor Complex (composition differences)

 High grade: not so easy to differentiate from country rock variable magnetic signatures are the result of deformation processes
 - Exception: Mount Hay Granulite - high grade, exhibits macroscopic layering
Interpreted mafic-ultramafic intrusions

Subcropping intrusion
- High magnetic intensity
- Coherent linear anomalies
- High magnetic intensity
- Massive texture
- Deeply buried intrusion
- Diffuse magnetic anomaly

Fault
- Boundary confident
- Boundary less confident
- Magnetic trend

Andrew Young Hills

North

Liebig

June 2006 – Evolution and Metallogeny of the North Australian Craton
Interpreted mafic-ultramafic intrusions

Andrew Young Hills

50 km

Interpreted mafic-ultramafic intrusions
Interpreted mafic-ultramafic intrusions
Interpreted mafic-ultramafic intrusions
Interpreted mafic-ultramafic intrusions
Relationships with crustal events

<table>
<thead>
<tr>
<th>Crustal Events (~Ma)</th>
<th>Stafford</th>
<th>Yambah</th>
<th>Strangways</th>
<th>Liebig</th>
<th>Teapot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mordor Complex</td>
<td>1133±5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andrew Young Hills</td>
<td>1633±3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Papunya gabbro</td>
<td>1635±5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papunya gabbro</td>
<td>1637±2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papunya ultramafic</td>
<td>1639±2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harry Anorthosite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabbro</td>
<td>1787±3</td>
<td>1685±20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mt Chapple</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metamorphics</td>
<td>1774±2</td>
<td>complex history</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attutra Metagrabbro</td>
<td>1786±4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johannsen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metagabbro</td>
<td>1805±3</td>
<td></td>
<td>1697±7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mt Hay Granulite</td>
<td>1803±5</td>
<td></td>
<td>1700±17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enbra Granulite</td>
<td>1811±3</td>
<td></td>
<td>1685±11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Potential settings for mineralisation in Arunta intrusions

- Attutra Metagabbro
- Andrew Young Hills
- Mt Hay, Mt Chapple
Mineral potential modelling

Knowledge driven qualitative method applied to rank the mafic-ultramafic intrusions with their probability to host Ni-Cu-Co±PGE mineralisation

Three types of orthomagmatic deposits:
1. Basal segregations of Ni-Cu-Co±PGE sulphides in mafic-ultramafic intrusions (Voisey’s Bay type deposits)
2. Stratabound PGE-bearing sulphide layers in large layered mafic-ultramafic intrusions (Merensky Reef type deposits)
3. Stratabound PGE-bearing sulphide layers in alkaline-ultramafic intrusions (Alaskan type deposits)
Mineral potential modelling

Stratabound PGE bearing sulphide layers in alkaline-ultramafic intrusions (Alaskan type)

Basal segregations of Ni-Cu-Co ± PGE sulphides (Voisey Bay type)

Stratabound PGE bearing sulphide layers in mafic-ultramafic intrusions (Merenski Reef type)
Favourable mineralised environments

Basal Ni-Cu-Co ± PGE sulphides
- Ni bearing magmas
- Rapid S saturation by magma contamination with country rock
- Massive sulphides hosted by thin basal gabbroic rock
- Massive sulphides confined to
 - basal contact with feeder conduit
 - structural embayments
 - base of thickest sequences of cumulates

Geophysics (magnetics)
- Define intrusion geometry
- Determine younging direction
- Locate favourable mineralised environments

Geophysics (airborne and ground electromagnetics and induced polarisation)
- Delineate conductive sulphides

Basal contact
Highly prospective

Embayment?
Highly prospective

Feeder conduit?
Highly prospective
References

Journal papers

Geoscience Australia Records

